Nuprl Lemma : last-cons
∀[x:Top]. ∀[as:Top List].  (last([x / as]) ~ if null(as) then x else last(as) fi )
Proof
Definitions occuring in Statement : 
last: last(L), 
null: null(as), 
cons: [a / b], 
list: T List, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
last: last(L), 
all: ∀x:A. B[x], 
or: P ∨ Q, 
top: Top, 
select: L[n], 
uimplies: b supposing a, 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ifthenelse: if b then t else f fi , 
btrue: tt, 
subtract: n - m, 
cons: [a / b], 
bfalse: ff, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ
Lemmas referenced : 
lelt_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
non_neg_length, 
cons_wf, 
select_cons_tl_sq, 
length_wf, 
add-subtract-cancel, 
list_wf, 
null_cons_lemma, 
product_subtype_list, 
base_wf, 
stuck-spread, 
null_nil_lemma, 
length_of_nil_lemma, 
length_of_cons_lemma, 
list-cases, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalAxiom, 
because_Cache, 
addEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[x:Top].  \mforall{}[as:Top  List].    (last([x  /  as])  \msim{}  if  null(as)  then  x  else  last(as)  fi  )
Date html generated:
2016_05_14-PM-01_36_35
Last ObjectModification:
2016_01_15-AM-08_24_24
Theory : list_1
Home
Index