Nuprl Lemma : select_cons_tl_sq

[T:Type]. ∀[x:T]. ∀[l:T List]. ∀[i:ℕ||l||].  ([x l][i 1] l[i])


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| cons: [a b] list: List int_seg: {i..j-} uall: [x:A]. B[x] add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) lelt: i ≤ j < k subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  select-cons-tl decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-zero le-add-cancel add-subtract-cancel int_seg_wf length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin isect_memberEquality voidElimination voidEquality addEquality setElimination rename hypothesisEquality natural_numberEquality independent_isectElimination dependent_functionElimination hypothesis unionElimination independent_pairFormation lambdaFormation productElimination independent_functionElimination applyEquality lambdaEquality intEquality because_Cache minusEquality universeEquality isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].    ([x  /  l][i  +  1]  \msim{}  l[i])



Date html generated: 2016_05_14-AM-06_36_33
Last ObjectModification: 2015_12_26-PM-00_33_55

Theory : list_0


Home Index