Nuprl Lemma : list-if-has-value-rev-append

[as,bs:Base].  as ∈ Base List supposing (rev(as) bs)↓


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs list: List has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rev-append: rev(as) bs list_accum: list_accum nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q nat_plus: + has-value: (a)↓ cons: [a b] pi2: snd(t) it: nil: []
Lemmas referenced :  nil_wf has-value-implies-dec-isaxiom-2 cons_wf top_wf has-value-implies-dec-ispair-2 fun_exp_unroll_1 int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le bottom_diverge strictness-apply fun_exp0_lemma base_wf int_subtype_base has-value_wf_base less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis compactness thin lemma_by_obid isectElimination hypothesisEquality setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality unionElimination dependent_set_memberEquality callbyvalueCallbyvalue callbyvalueReduce because_Cache

Latex:
\mforall{}[as,bs:Base].    as  \mmember{}  Base  List  supposing  (rev(as)  +  bs)\mdownarrow{}



Date html generated: 2016_05_14-AM-07_40_09
Last ObjectModification: 2016_01_15-AM-08_42_03

Theory : list_1


Home Index