Nuprl Lemma : list_2_decomp

[T:Type]. ∀[z:T List].  [z[0]; z[1]] ∈ (T List) supposing ||z|| 2 ∈ ℕ


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| cons: [a b] nil: [] list: List nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] nat: guard: {T} prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False cons: [a b] subtract: m le: A ≤ B and: P ∧ Q implies:  Q not: ¬A
Lemmas referenced :  list_wf length_wf_nat nat_wf equal-wf-T-base int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermAdd_wf itermVar_wf intformle_wf intformand_wf non_neg_length nil_wf cons_wf length_of_cons_lemma product_subtype_list int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_eq_lemma itermConstant_wf intformeq_wf satisfiable-full-omega-tt le_wf nat_properties base_wf stuck-spread length_of_nil_lemma list-cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule baseClosed independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename setEquality intEquality natural_numberEquality dependent_pairFormation computeAll promote_hyp hypothesis_subsumption productElimination because_Cache int_eqEquality independent_pairFormation axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[z:T  List].    z  =  [z[0];  z[1]]  supposing  ||z||  =  2



Date html generated: 2016_05_14-PM-03_00_27
Last ObjectModification: 2016_01_15-AM-07_24_03

Theory : list_1


Home Index