Nuprl Lemma : list_2_decomp
∀[T:Type]. ∀[z:T List].  z = [z[0]; z[1]] ∈ (T List) supposing ||z|| = 2 ∈ ℕ
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
guard: {T}
, 
prop: ℙ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
cons: [a / b]
, 
subtract: n - m
, 
le: A ≤ B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
list_wf, 
length_wf_nat, 
nat_wf, 
equal-wf-T-base, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformand_wf, 
non_neg_length, 
nil_wf, 
cons_wf, 
length_of_cons_lemma, 
product_subtype_list, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
itermConstant_wf, 
intformeq_wf, 
satisfiable-full-omega-tt, 
le_wf, 
nat_properties, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
list-cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
intEquality, 
natural_numberEquality, 
dependent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
because_Cache, 
int_eqEquality, 
independent_pairFormation, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[z:T  List].    z  =  [z[0];  z[1]]  supposing  ||z||  =  2
Date html generated:
2016_05_14-PM-03_00_27
Last ObjectModification:
2016_01_15-AM-07_24_03
Theory : list_1
Home
Index