Nuprl Lemma : map-index_wf
∀[A,B:Type]. ∀[L:A List]. ∀[f:ℕ||L|| ⟶ {a:A| (a ∈ L)}  ⟶ B].  (map-index(f;L) ∈ B List)
Proof
Definitions occuring in Statement : 
map-index: map-index(f;L)
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
map-index: map-index(f;L)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
map-index_aux_wf, 
l_member_wf, 
list-subtype, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
zero-add, 
length_wf, 
length_wf_nat, 
int_seg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
instantiate, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  \{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  B].    (map-index(f;L)  \mmember{}  B  List)
Date html generated:
2016_05_14-PM-03_12_48
Last ObjectModification:
2015_12_26-PM-01_46_48
Theory : list_1
Home
Index