Nuprl Lemma : map-index_wf

[A,B:Type]. ∀[L:A List]. ∀[f:ℕ||L|| ⟶ {a:A| (a ∈ L)}  ⟶ B].  (map-index(f;L) ∈ List)


Proof




Definitions occuring in Statement :  map-index: map-index(f;L) l_member: (x ∈ l) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T map-index: map-index(f;L) prop: uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  map-index_aux_wf l_member_wf list-subtype subtype_base_sq set_subtype_base int_subtype_base zero-add length_wf length_wf_nat int_seg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis cumulativity equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule instantiate because_Cache independent_isectElimination dependent_functionElimination independent_functionElimination axiomEquality functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  \{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  B].    (map-index(f;L)  \mmember{}  B  List)



Date html generated: 2016_05_14-PM-03_12_48
Last ObjectModification: 2015_12_26-PM-01_46_48

Theory : list_1


Home Index