Nuprl Lemma : map-index_wf
∀[A,B:Type]. ∀[L:A List]. ∀[f:ℕ||L|| ⟶ {a:A| (a ∈ L)} ⟶ B]. (map-index(f;L) ∈ B List)
Proof
Definitions occuring in Statement :
map-index: map-index(f;L)
,
l_member: (x ∈ l)
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
map-index: map-index(f;L)
,
prop: ℙ
,
uimplies: b supposing a
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
Lemmas referenced :
map-index_aux_wf,
l_member_wf,
list-subtype,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
zero-add,
length_wf,
length_wf_nat,
int_seg_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setEquality,
hypothesisEquality,
hypothesis,
cumulativity,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
sqequalRule,
instantiate,
because_Cache,
independent_isectElimination,
dependent_functionElimination,
independent_functionElimination,
axiomEquality,
functionEquality,
isect_memberEquality,
universeEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[L:A List]. \mforall{}[f:\mBbbN{}||L|| {}\mrightarrow{} \{a:A| (a \mmember{} L)\} {}\mrightarrow{} B]. (map-index(f;L) \mmember{} B List)
Date html generated:
2016_05_14-PM-03_12_48
Last ObjectModification:
2015_12_26-PM-01_46_48
Theory : list_1
Home
Index