Nuprl Lemma : better-fibs_wf
better-fibs() ∈ stream(ℕ)
Proof
Definitions occuring in Statement : 
better-fibs: better-fibs()
, 
stream: stream(A)
, 
nat: ℕ
, 
member: t ∈ T
Definitions unfolded in proof : 
better-fibs: better-fibs()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
mk-stream_wf, 
nat_wf, 
value-type-has-value, 
int-value-type, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
false_wf, 
product-valueall-type, 
set-valueall-type, 
int-valueall-type, 
stream_wf, 
stream-map_wf, 
pi1_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productElimination, 
sqequalRule, 
callbyvalueReduce, 
intEquality, 
independent_isectElimination, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
independent_pairEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
better-fibs()  \mmember{}  stream(\mBbbN{})
Date html generated:
2017_04_17-AM-09_49_15
Last ObjectModification:
2017_02_27-PM-05_45_23
Theory : num_thy_1
Home
Index