Nuprl Lemma : chrem_exists

r,s:ℕ+.  (CoPrime(r,s)  (∀a,b:ℤ.  ∃x:ℤ((x ≡ mod r) ∧ (x ≡ mod s))))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m coprime: CoPrime(a,b) nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q int:
Definitions unfolded in proof :  prop: nat_plus: + uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] coprime: CoPrime(a,b) exists: x:A. B[x] and: P ∧ Q top: Top uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_plus_wf coprime_wf istype-int chrem_exists_aux gcd_p_sym eqmod_wf istype-void mul-commutes one-mul zero-mul add-zero eqmod_functionality_wrt_eqmod add_functionality_wrt_eqmod multiply_functionality_wrt_eqmod eqmod_weakening zero-add
Rules used in proof :  rename setElimination thin isectElimination sqequalHypSubstitution Error :universeIsType,  hypothesis extract_by_obid introduction cut hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache independent_functionElimination dependent_functionElimination natural_numberEquality productElimination Error :dependent_pairFormation_alt,  addEquality multiplyEquality independent_pairFormation sqequalRule Error :productIsType,  Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}r,s:\mBbbN{}\msupplus{}.    (CoPrime(r,s)  {}\mRightarrow{}  (\mforall{}a,b:\mBbbZ{}.    \mexists{}x:\mBbbZ{}.  ((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))))



Date html generated: 2019_06_20-PM-02_25_01
Last ObjectModification: 2019_01_17-AM-09_14_04

Theory : num_thy_1


Home Index