Nuprl Lemma : eqmod-eqmod-div

m,m',a,a',b,b':ℤ.  ((m' m)  (a ≡ a' mod m)  (b ≡ b' mod m)  (a ≡ mod m' ⇐⇒ a' ≡ b' mod m'))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m divides: a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q eqmod: a ≡ mod m divides: a exists: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) guard: {T} squash: T prop: true: True subtype_rel: A ⊆B rev_implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf squash_wf true_wf mul_assoc iff_weakening_equal eqmod_wf divides_wf subtract_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermMultiply_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin promote_hyp cut instantiate introduction extract_by_obid isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaEquality imageElimination universeEquality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed dependent_pairFormation addEquality multiplyEquality unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll baseApply closedConclusion

Latex:
\mforall{}m,m',a,a',b,b':\mBbbZ{}.
    ((m'  |  m)  {}\mRightarrow{}  (a  \mequiv{}  a'  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  b'  mod  m)  {}\mRightarrow{}  (a  \mequiv{}  b  mod  m'  \mLeftarrow{}{}\mRightarrow{}  a'  \mequiv{}  b'  mod  m'))



Date html generated: 2017_04_17-AM-09_42_49
Last ObjectModification: 2017_02_27-PM-05_37_40

Theory : num_thy_1


Home Index