Nuprl Lemma : trivial-unsat-integer-inequality
∀[xs:ℤ List]. (¬xs ⋅ [-1] ≥0)
Proof
Definitions occuring in Statement : 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
top: Top
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
prop: ℙ
, 
ge: i ≥ j 
, 
cons: [a / b]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
le: A ≤ B
, 
true: True
Lemmas referenced : 
list_wf, 
nil_wf, 
cons_wf, 
satisfies-integer-inequality_wf, 
length_wf, 
equal_wf, 
and_wf, 
int_subtype_base, 
subtype_base_sq, 
int_dot_nil_left_lemma, 
int_dot_cons_lemma, 
reduce_hd_cons_lemma, 
product_subtype_list, 
ge_wf, 
less_than_wf, 
equal-wf-base, 
int_dot_cons_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
list-cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
intEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
imageElimination, 
productEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
promote_hyp, 
hypothesis_subsumption, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
addEquality, 
multiplyEquality, 
minusEquality, 
rename, 
lambdaEquality
Latex:
\mforall{}[xs:\mBbbZ{}  List].  (\mneg{}xs  \mcdot{}  [-1]  \mgeq{}0)
Date html generated:
2016_05_14-AM-06_56_19
Last ObjectModification:
2016_01_14-PM-08_44_36
Theory : omega
Home
Index