Nuprl Lemma : trivial-unsat-integer-inequality

[xs:ℤ List]. xs ⋅ [-1] ≥0)


Proof




Definitions occuring in Statement :  satisfies-integer-inequality: xs ⋅ as ≥0 cons: [a b] nil: [] list: List uall: [x:A]. B[x] not: ¬A minus: -n natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False all: x:A. B[x] or: P ∨ Q satisfies-integer-inequality: xs ⋅ as ≥0 top: Top and: P ∧ Q less_than: a < b squash: T less_than': less_than'(a;b) prop: ge: i ≥  cons: [a b] uimplies: supposing a sq_type: SQType(T) guard: {T} le: A ≤ B true: True
Lemmas referenced :  list_wf nil_wf cons_wf satisfies-integer-inequality_wf length_wf equal_wf and_wf int_subtype_base subtype_base_sq int_dot_nil_left_lemma int_dot_cons_lemma reduce_hd_cons_lemma product_subtype_list ge_wf less_than_wf equal-wf-base int_dot_cons_nil_lemma length_of_cons_lemma length_of_nil_lemma list-cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin intEquality lemma_by_obid sqequalHypSubstitution isectElimination hypothesis dependent_functionElimination hypothesisEquality unionElimination sqequalRule isect_memberEquality voidElimination voidEquality productElimination imageElimination productEquality baseClosed equalityTransitivity equalitySymmetry because_Cache promote_hyp hypothesis_subsumption instantiate cumulativity independent_isectElimination independent_functionElimination natural_numberEquality addEquality multiplyEquality minusEquality rename lambdaEquality

Latex:
\mforall{}[xs:\mBbbZ{}  List].  (\mneg{}xs  \mcdot{}  [-1]  \mgeq{}0)



Date html generated: 2016_05_14-AM-06_56_19
Last ObjectModification: 2016_01_14-PM-08_44_36

Theory : omega


Home Index