Nuprl Lemma : wfterm-accum_wf

[opr:Type]. ∀[sort:term(opr) ⟶ ℕ]. ∀[arity:opr ⟶ ((ℕ × ℕList)]. ∀[Param:Type]. ∀[C:Param
                                                                                        ⟶ wfterm(opr;sort;arity)
                                                                                        ⟶ Type].
[nextp:Param
        ⟶ (varname() List)
        ⟶ opr
        ⟶ very-dep-fun(Param;varname() List × wfterm(opr;sort;arity);a,bt.C[a;snd(bt)])].
[m:a:Param
    ⟶ vs:(varname() List)
    ⟶ f:opr
    ⟶ L:{L:(a:Param × bt:varname() List × wfterm(opr;sort;arity) × C[a;snd(bt)]) List| 
          vdf-eq(Param;nextp vs f;L) ∧ (↑wf-term(arity;sort;mkterm(f;map(λx.(fst(snd(x)));L))))} 
    ⟶ C[a;mkterm(f;map(λx.(fst(snd(x)));L))]]. ∀[varcase:a:Param
                                                          ⟶ vs:(varname() List)
                                                          ⟶ v:{v:varname()| ¬(v nullvar() ∈ varname())} 
                                                          ⟶ C[a;varterm(v)]]. ∀[p:Param]. ∀[t:wfterm(opr;sort;arity)].
  (wfterm-accum(p;t)
   p,vs,v.varcase[p;vs;v]
   prm,vs,f,L.m[prm;vs;f;L]
   p0,ws,op,sofar,bt.nextp[p0;ws;op;sofar;bt] ∈ C[p;t])


Proof




Definitions occuring in Statement :  wfterm-accum: wfterm-accum wfterm: wfterm(opr;sort;arity) wf-term: wf-term(arity;sort;t) mkterm: mkterm(opr;bts) varterm: varterm(v) term: term(opr) nullvar: nullvar() varname: varname() very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) map: map(f;as) list: List nat: assert: b uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4;s5] so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a guard: {T} all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] wfterm-accum: wfterm-accum so_lambda: so_lambda4 and: P ∧ Q pi2: snd(t) istype: istype(T) prop: pi1: fst(t) hered-term: hered-term(opr;t.P[t]) so_apply: x[s1;s2;s3;s4] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q implies:  Q wfterm: wfterm(opr;sort;arity) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] not: ¬A false: False assert: b ifthenelse: if then else fi  wf-term: wf-term(arity;sort;t) varterm: varterm(v) btrue: tt true: True sq_type: SQType(T)
Lemmas referenced :  wfterm-hered-correct-sort-arity hered-term-accum_wf2 correct-sort-arity_wf term_wf subtype_rel_dep_function wfterm_wf hered-term_wf ext-eq_inversion subtype_rel_weakening list_wf varname_wf very-dep-fun_wf pi2_wf very-dep-fun-subtype-domain subtype_rel_product vdf-eq_wf subtype_rel_list hereditarily_wf mkterm_wf map_wf wf-term-hereditarily-correct-sort-arity istype-assert wf-term_wf nullvar_wf istype-void varterm_wf assert_elim subtype_base_sq bool_wf bool_subtype_base nat_wf istype-nat istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt universeIsType functionExtensionality applyEquality instantiate cumulativity universeEquality because_Cache independent_isectElimination lambdaFormation_alt inhabitedIsType functionEquality productEquality productIsType productElimination dependent_functionElimination independent_pairEquality setElimination rename dependent_set_memberEquality_alt independent_pairFormation independent_functionElimination setIsType functionIsType equalityIstype natural_numberEquality voidElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[opr:Type].  \mforall{}[sort:term(opr)  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[arity:opr  {}\mrightarrow{}  ((\mBbbN{}  \mtimes{}  \mBbbN{})  List)].  \mforall{}[Param:Type].
\mforall{}[C:Param  {}\mrightarrow{}  wfterm(opr;sort;arity)  {}\mrightarrow{}  Type].  \mforall{}[nextp:Param
                                                                                                            {}\mrightarrow{}  (varname()  List)
                                                                                                            {}\mrightarrow{}  opr
                                                                                                            {}\mrightarrow{}  very-dep-fun(Param;varname()  List
                                                                                                                  \mtimes{}  wfterm(opr;sort;arity);a,bt.C[a;
                                                                                                                                                                                snd(bt)])].
\mforall{}[m:a:Param
        {}\mrightarrow{}  vs:(varname()  List)
        {}\mrightarrow{}  f:opr
        {}\mrightarrow{}  L:\{L:(a:Param  \mtimes{}  bt:varname()  List  \mtimes{}  wfterm(opr;sort;arity)  \mtimes{}  C[a;snd(bt)])  List| 
                    vdf-eq(Param;nextp  a  vs  f;L)  \mwedge{}  (\muparrow{}wf-term(arity;sort;mkterm(f;map(\mlambda{}x.(fst(snd(x)));L))))\} 
        {}\mrightarrow{}  C[a;mkterm(f;map(\mlambda{}x.(fst(snd(x)));L))]].  \mforall{}[varcase:a:Param
                                                                                                                    {}\mrightarrow{}  vs:(varname()  List)
                                                                                                                    {}\mrightarrow{}  v:\{v:varname()|  \mneg{}(v  =  nullvar())\} 
                                                                                                                    {}\mrightarrow{}  C[a;varterm(v)]].  \mforall{}[p:Param].
\mforall{}[t:wfterm(opr;sort;arity)].
    (wfterm-accum(p;t)
      p,vs,v.varcase[p;vs;v]
      prm,vs,f,L.m[prm;vs;f;L]
      p0,ws,op,sofar,bt.nextp[p0;ws;op;sofar;bt]  \mmember{}  C[p;t])



Date html generated: 2020_05_19-PM-09_58_48
Last ObjectModification: 2020_03_12-PM-01_19_00

Theory : terms


Home Index