Nuprl Lemma : very-dep-fun-subtype-domain

[A,B1,B2:Type]. ∀[C:A ⟶ B2 ⟶ Type].
  very-dep-fun(A;B2;a,b.C[a;b]) ⊆very-dep-fun(A;B1;a,b.C[a;b]) supposing B1 ⊆B2


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q vdf: vdf(A;B;a,b.C[a; b];n) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt istype: istype(T) le: A ≤ B bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  subtype_rel_wf vdf_wf istype-int isect_subtype decidable__le istype-le nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 subtype_rel_dep_function list_wf equal-wf-base length_wf_nat set_subtype_base le_wf int_subtype_base subtype_rel_sets subtype_rel_set subtype_rel_list subtype_rel_product vdf-wf+ subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma lt_int_wf dep-isect-subtype2 length_wf subtract-add-cancel istype-universe eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule axiomEquality hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType because_Cache intEquality lambdaEquality_alt applyEquality lambdaFormation_alt independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_set_memberEquality_alt equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination setElimination rename intWeakElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination functionIsTypeImplies setEquality productEquality baseClosed functionEquality setIsType sqequalBase productElimination productIsType equalityElimination promote_hyp instantiate cumulativity functionExtensionality universeEquality

Latex:
\mforall{}[A,B1,B2:Type].  \mforall{}[C:A  {}\mrightarrow{}  B2  {}\mrightarrow{}  Type].
    very-dep-fun(A;B2;a,b.C[a;b])  \msubseteq{}r  very-dep-fun(A;B1;a,b.C[a;b])  supposing  B1  \msubseteq{}r  B2



Date html generated: 2020_05_19-PM-09_40_25
Last ObjectModification: 2020_03_10-PM-05_33_48

Theory : co-recursion-2


Home Index