Nuprl Lemma : bag-append-eq-empty

[T:Type]. ∀[b1,b2:bag(T)].  uiff((b1 b2) {} ∈ bag(T);(b1 {} ∈ bag(T)) ∧ (b2 {} ∈ bag(T)))


Proof




Definitions occuring in Statement :  bag-append: as bs empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] empty-bag: {} bag-append: as bs top: Top guard: {T} implies:  Q prop:
Lemmas referenced :  bag-append_wf bag_wf istype-universe bag-subtype-list append_is_nil top_wf list-subtype-bag istype-void istype-top equal_functionality_wrt_subtype_rel2 list_wf equal-empty-bag equal-wf-T-base empty_bag_append_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis equalityIsType3 inhabitedIsType hypothesisEquality extract_by_obid isectElimination baseClosed productIsType because_Cache isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate universeEquality applyEquality dependent_functionElimination independent_isectElimination promote_hyp lambdaEquality_alt voidElimination equalityTransitivity equalitySymmetry independent_functionElimination cumulativity applyLambdaEquality hyp_replacement voidEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b1,b2:bag(T)].    uiff((b1  +  b2)  =  \{\};(b1  =  \{\})  \mwedge{}  (b2  =  \{\}))



Date html generated: 2019_10_15-AM-10_59_57
Last ObjectModification: 2018_10_16-PM-05_37_36

Theory : bags


Home Index