Nuprl Lemma : bag-combine-eq-out
∀[A,B,C:Type]. ∀[as:bag(A)]. ∀[bs:bag(B)]. ∀[f:A ⟶ bag(C)]. ∀[g:B ⟶ bag(C)]. ∀[h:A ⟶ B].
  (⋃a∈as.f[a] = ⋃b∈bs.g[b] ∈ bag(C)) supposing 
     ((∀a:A. (a ↓∈ as 
⇒ (g[h[a]] = f[a] ∈ bag(C)))) and 
     (bs = bag-map(h;as) ∈ bag(B)))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-combine_wf, 
bag-combine-map, 
iff_weakening_equal, 
set_wf, 
bag-member_wf, 
bag-subtype, 
sq_stable__bag-member, 
all_wf, 
bag-map_wf
Rules used in proof : 
cut, 
hypothesis, 
thin, 
applyEquality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
sqequalRule, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
functionEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[as:bag(A)].  \mforall{}[bs:bag(B)].  \mforall{}[f:A  {}\mrightarrow{}  bag(C)].  \mforall{}[g:B  {}\mrightarrow{}  bag(C)].  \mforall{}[h:A  {}\mrightarrow{}  B].
    (\mcup{}a\mmember{}as.f[a]  =  \mcup{}b\mmember{}bs.g[b])  supposing 
          ((\mforall{}a:A.  (a  \mdownarrow{}\mmember{}  as  {}\mRightarrow{}  (g[h[a]]  =  f[a])))  and 
          (bs  =  bag-map(h;as)))
Date html generated:
2017_10_01-AM-08_57_13
Last ObjectModification:
2017_07_26-PM-04_39_21
Theory : bags
Home
Index