Nuprl Lemma : bag-member-ifthenelse
∀[T:Type]. ∀[as,bs:bag(T)]. ∀[x:T].  ∀b:𝔹. uiff(x ↓∈ if b then as else bs fi if b then x ↓∈ as else x ↓∈ bs fi )
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
prop: ℙ
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
eqtt_to_assert, 
bag-member_wf, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
ifthenelse_wf, 
bag_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
thin, 
because_Cache, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
isect_memberFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
universeEquality, 
lambdaEquality, 
independent_pairEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].  \mforall{}[x:T].
    \mforall{}b:\mBbbB{}.  uiff(x  \mdownarrow{}\mmember{}  if  b  then  as  else  bs  fi  ;if  b  then  x  \mdownarrow{}\mmember{}  as  else  x  \mdownarrow{}\mmember{}  bs  fi  )
Date html generated:
2017_10_01-AM-08_54_28
Last ObjectModification:
2017_07_26-PM-04_36_17
Theory : bags
Home
Index