Nuprl Lemma : bag-member-ifthenelse

[T:Type]. ∀[as,bs:bag(T)]. ∀[x:T].  ∀b:𝔹uiff(x ↓∈ if then as else bs fi ;if then x ↓∈ as else x ↓∈ bs fi )


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) ifthenelse: if then else fi  bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bag-member: x ↓∈ bs squash: T prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  eqtt_to_assert bag-member_wf eqff_to_assert equal_wf bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot ifthenelse_wf bag_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality thin because_Cache lambdaFormation sqequalHypSubstitution unionElimination equalityElimination introduction extract_by_obid isectElimination hypothesis productElimination independent_isectElimination sqequalRule independent_pairFormation isect_memberFormation imageElimination imageMemberEquality baseClosed cumulativity dependent_pairFormation promote_hyp dependent_functionElimination instantiate equalityTransitivity equalitySymmetry independent_functionElimination voidElimination universeEquality lambdaEquality independent_pairEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].  \mforall{}[x:T].
    \mforall{}b:\mBbbB{}.  uiff(x  \mdownarrow{}\mmember{}  if  b  then  as  else  bs  fi  ;if  b  then  x  \mdownarrow{}\mmember{}  as  else  x  \mdownarrow{}\mmember{}  bs  fi  )



Date html generated: 2017_10_01-AM-08_54_28
Last ObjectModification: 2017_07_26-PM-04_36_17

Theory : bags


Home Index