Nuprl Lemma : bag-summation-minus

[T:Type]. ∀[r:Rng]. ∀[b:bag(T)]. ∀[f:T ⟶ |r|].  (x∈b). -r f[x] (-r Σ(x∈b). f[x]) ∈ |r|)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_minus: -r rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng: Rng comm: Comm(T;op) uimplies: supposing a and: P ∧ Q cand: c∧ B exists: x:A. B[x] rng_sig: RngSig prop: ring_p: IsRing(T;plus;zero;neg;times;one) all: x:A. B[x] squash: T true: True so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rng_car_wf bag_wf rng_wf rng_plus_comm bag-summation-linear1 rng_plus_wf rng_times_wf rng_zero_wf rng_minus_wf rng_properties group_p_wf rng_all_properties rng_one_wf equal_wf squash_wf true_wf bag-summation_wf assoc_wf comm_wf rng_times_over_minus rng_times_one iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality cumulativity hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache universeEquality independent_isectElimination dependent_pairFormation productElimination functionExtensionality applyEquality independent_pairFormation dependent_functionElimination hyp_replacement equalitySymmetry lambdaEquality imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed productEquality independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  |r|].    (\mSigma{}(x\mmember{}b).  -r  f[x]  =  (-r  \mSigma{}(x\mmember{}b).  f[x]))



Date html generated: 2017_10_01-AM-08_51_01
Last ObjectModification: 2017_07_26-PM-04_33_04

Theory : bags


Home Index