Nuprl Lemma : bag-summation-minus
∀[T:Type]. ∀[r:Rng]. ∀[b:bag(T)]. ∀[f:T ⟶ |r|].  (Σ(x∈b). -r f[x] = (-r Σ(x∈b). f[x]) ∈ |r|)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_minus: -r
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
rng_sig: RngSig
, 
prop: ℙ
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
rng_car_wf, 
bag_wf, 
rng_wf, 
rng_plus_comm, 
bag-summation-linear1, 
rng_plus_wf, 
rng_times_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_properties, 
group_p_wf, 
rng_all_properties, 
rng_one_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag-summation_wf, 
assoc_wf, 
comm_wf, 
rng_times_over_minus, 
rng_times_one, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
independent_isectElimination, 
dependent_pairFormation, 
productElimination, 
functionExtensionality, 
applyEquality, 
independent_pairFormation, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productEquality, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  |r|].    (\mSigma{}(x\mmember{}b).  -r  f[x]  =  (-r  \mSigma{}(x\mmember{}b).  f[x]))
Date html generated:
2017_10_01-AM-08_51_01
Last ObjectModification:
2017_07_26-PM-04_33_04
Theory : bags
Home
Index