Nuprl Lemma : non-empty-bag-implies-non-void

[T:Type]. ∀[bs:bag(T)].  ((¬(bs {} ∈ bag(T)))  (↓T))


Proof




Definitions occuring in Statement :  empty-bag: {} bag: bag(T) uall: [x:A]. B[x] not: ¬A squash: T implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B nat: prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top squash: T
Lemmas referenced :  empty-bag_wf bag_wf equal_wf not_wf bag-member-iff-size int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_wf bag-size_wf le_wf empty-bag-iff-size
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis addLevel sqequalHypSubstitution impliesFunctionality lemma_by_obid isectElimination thin hypothesisEquality productElimination independent_isectElimination applyEquality lambdaEquality setElimination rename sqequalRule natural_numberEquality levelHypothesis promote_hyp dependent_functionElimination unionElimination because_Cache dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination imageMemberEquality baseClosed impliesLevelFunctionality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    ((\mneg{}(bs  =  \{\}))  {}\mRightarrow{}  (\mdownarrow{}T))



Date html generated: 2016_05_15-PM-02_37_20
Last ObjectModification: 2016_01_16-AM-08_49_50

Theory : bags


Home Index