Nuprl Lemma : non-empty-bag-implies-non-void
∀[T:Type]. ∀[bs:bag(T)].  ((¬(bs = {} ∈ bag(T))) ⇒ (↓T))
Proof
Definitions occuring in Statement : 
empty-bag: {}, 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
squash: ↓T, 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
not: ¬A, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
squash: ↓T
Lemmas referenced : 
empty-bag_wf, 
bag_wf, 
equal_wf, 
not_wf, 
bag-member-iff-size, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_wf, 
bag-size_wf, 
le_wf, 
empty-bag-iff-size
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
impliesFunctionality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
levelHypothesis, 
promote_hyp, 
dependent_functionElimination, 
unionElimination, 
because_Cache, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
impliesLevelFunctionality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    ((\mneg{}(bs  =  \{\}))  {}\mRightarrow{}  (\mdownarrow{}T))
Date html generated:
2016_05_15-PM-02_37_20
Last ObjectModification:
2016_01_16-AM-08_49_50
Theory : bags
Home
Index