Nuprl Lemma : subtype-bag-only

[T:Type]. ∀[bs:bag(T)].  bs ∈ bag({x:T| only(bs) ∈ T} supposing #(bs) 1 ∈ ℤ


Proof




Definitions occuring in Statement :  bag-only: only(bs) bag-size: #(bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B nat: single-bag: {x}
Lemmas referenced :  bag-size-one bag-only_wf equal_wf equal-wf-T-base bag-size_wf nat_wf bag_wf cons_wf nil_wf list-subtype-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule cumulativity because_Cache lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality intEquality applyEquality lambdaEquality setElimination rename baseClosed isect_memberEquality universeEquality setEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].    bs  \mmember{}  bag(\{x:T|  x  =  only(bs)\}  )  supposing  \#(bs)  =  1



Date html generated: 2017_10_01-AM-08_52_32
Last ObjectModification: 2017_07_26-PM-04_34_04

Theory : bags


Home Index