Nuprl Lemma : bag-drop-head
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x:T].  (bag-drop(eq;[x / bs];x) ~ bs)
Proof
Definitions occuring in Statement : 
bag-drop: bag-drop(eq;bs;a), 
bag: bag(T), 
cons: [a / b], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag-drop: bag-drop(eq;bs;a), 
bag-remove1: bag-remove1(eq;bs;a), 
bag_remove1_aux: bag_remove1_aux(eq;checked;a;as), 
all: ∀x:A. B[x], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
append: as @ bs, 
deq: EqDecider(T), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
eqof: eqof(d), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
bag_wf, 
deq_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
extract_by_obid, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
applyEquality, 
setElimination, 
rename, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    (bag-drop(eq;[x  /  bs];x)  \msim{}  bs)
Date html generated:
2018_05_21-PM-09_48_50
Last ObjectModification:
2017_07_26-PM-06_30_46
Theory : bags_2
Home
Index