Nuprl Lemma : bag-remove-repeats-filter
∀[T:Type]. ∀[b:bag(T)]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹].
  (bag-remove-repeats(eq;[x∈b|P[x]]) = [x∈bag-remove-repeats(eq;b)|P[x]] ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-remove-repeats: bag-remove-repeats(eq;bs)
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-remove-repeats: bag-remove-repeats(eq;bs)
, 
bag-filter: [x∈b|p[x]]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
bag_to_squash_list, 
list-to-set-filter, 
filter_wf5, 
list-to-set_wf, 
l_member_wf, 
list-subtype-bag, 
equal_wf, 
bag_wf, 
bag-remove-repeats_wf, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
rename, 
sqequalRule, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
because_Cache, 
lambdaFormation, 
setElimination, 
setEquality, 
independent_isectElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    (bag-remove-repeats(eq;[x\mmember{}b|P[x]])  =  [x\mmember{}bag-remove-repeats(eq;b)|P[x]])
Date html generated:
2016_10_25-AM-11_26_55
Last ObjectModification:
2016_07_12-AM-07_33_26
Theory : bags_2
Home
Index