Nuprl Lemma : bag-subtract-size

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:bag(T)].
  #(bag-subtract(eq;bs;as)) (#(bs) #(as)) ∈ ℤ supposing sub-bag(T;as;bs)


Proof




Definitions occuring in Statement :  bag-subtract: bag-subtract(eq;bs;as) sub-bag: sub-bag(T;as;bs) bag-size: #(bs) bag: bag(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] subtract: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] prop: subtype_rel: A ⊆B nat: true: True top: Top all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  equal_wf bag-size_wf bag-subtract_wf nat_wf subtract_wf sub-bag_wf bag_wf deq_wf bag-size-append decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_wf squash_wf true_wf bag-subtract-append iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis hyp_replacement equalitySymmetry applyLambdaEquality extract_by_obid isectElimination intEquality cumulativity hypothesisEquality applyEquality lambdaEquality setElimination rename sqequalRule because_Cache isect_memberEquality axiomEquality equalityTransitivity universeEquality natural_numberEquality voidElimination voidEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality computeAll imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:bag(T)].
    \#(bag-subtract(eq;bs;as))  =  (\#(bs)  -  \#(as))  supposing  sub-bag(T;as;bs)



Date html generated: 2018_05_21-PM-09_49_27
Last ObjectModification: 2017_07_26-PM-06_31_05

Theory : bags_2


Home Index