Nuprl Lemma : CCC-compact

K:Type. (CCCNSet(K)  compact-type(K))


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) ccc-nset: CCCNSet(K) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q compact-type: compact-type(T) so_lambda: λ2x.t[x] uall: [x:A]. B[x] so_apply: x[s] or: P ∨ Q exists: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  not: ¬A true: True false: False bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb iff: ⇐⇒ Q rev_implies:  Q prop:
Lemmas referenced :  CCC-omni not_wf assert_wf decidable__not decidable__assert eqtt_to_assert istype-true istype-void eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bfalse_wf btrue_wf iff_imp_equal_bool ccc-nset_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination sqequalRule lambdaEquality_alt isectElimination applyEquality universeIsType because_Cache unionElimination inlFormation_alt productElimination dependent_pairFormation_alt inhabitedIsType equalityElimination independent_isectElimination natural_numberEquality voidElimination functionIsType equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity inrFormation_alt independent_pairFormation productIsType universeEquality

Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  compact-type(K))



Date html generated: 2019_10_15-AM-10_47_07
Last ObjectModification: 2019_06_20-AM-10_22_17

Theory : basic


Home Index