Nuprl Lemma : compact-type-compact-type2

[T:Type]. (compact-type(T) ∧ ⇐⇒ compact-type2(T))


Proof




Definitions occuring in Statement :  compact-type2: compact-type2(T) compact-type: compact-type(T) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q compact-type: compact-type(T) compact-type2: compact-type2(T) p-selector: p-selector(T;x;p) member: t ∈ T prop: rev_implies:  Q all: x:A. B[x] or: P ∨ Q exists: x:A. B[x] sq_exists: x:{A| B[x]} so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} not: ¬A false: False sq_stable: SqStable(P) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff top: Top
Lemmas referenced :  compact-type_wf compact-type2_wf bool_wf exists_wf equal-wf-T-base squash_wf true_wf equal_wf bfalse_wf iff_weakening_equal btrue_neq_bfalse sq_stable__all sq_stable__equal all_wf btrue_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule productEquality cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis universeEquality dependent_functionElimination unionElimination functionEquality dependent_set_memberFormation lambdaEquality applyEquality functionExtensionality baseClosed because_Cache rename imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality independent_isectElimination independent_functionElimination voidElimination setElimination axiomEquality equalityElimination inlFormation dependent_pairFormation inrFormation equalityUniverse levelHypothesis isect_memberEquality voidEquality

Latex:
\mforall{}[T:Type].  (compact-type(T)  \mwedge{}  T  \mLeftarrow{}{}\mRightarrow{}  compact-type2(T))



Date html generated: 2017_10_01-AM-08_28_49
Last ObjectModification: 2017_07_26-PM-04_23_41

Theory : basic


Home Index