Nuprl Lemma : sqle-append-nil-if-has-value4

[t:ListLike]. (t ≤ [])


Proof




Definitions occuring in Statement :  is-list-if-has-value: ListLike append: as bs nil: [] uall: [x:A]. B[x] sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q unit: Unit it: nil: [] append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] cons: [a b] decidable: Dec(P) guard: {T} subtype_rel: A ⊆B istype: istype(T) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than is-list-if-has-value_wf subtract-1-ge-0 is-list-if-has-value-hv-prp is-list-if-has-value-decomp list_ind_nil_lemma list_ind_cons_lemma subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma istype-le partial-not-exception b-union_wf unit_wf2 top_wf partial_wf subtype_rel_functionality_wrt_iff is-list-if-has-value-ext ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqleDefinition thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination axiomSqleNEquality functionIsTypeImplies inhabitedIsType sqleZero because_Cache divergentSqlen axiomSqleEquality unionElimination productElimination equalityTransitivity equalitySymmetry equalityElimination sqle_n rule equalityIstype sqlenSqequaln sqequalnReflexivity dependent_set_memberEquality_alt productEquality applyEquality

Latex:
\mforall{}[t:ListLike].  (t  \mleq{}  t  @  [])



Date html generated: 2020_05_20-AM-09_07_45
Last ObjectModification: 2020_01_28-AM-11_30_49

Theory : eval!all


Home Index