Nuprl Lemma : union-atom-disjoint

[T,S:Type].  S ⋂ Atom)


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uall: [x:A]. B[x] not: ¬A union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q cand: c∧ B all: x:A. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  isect2_decomp injection-eta bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert bfalse_wf eqff_to_assert assert_of_bnot btrue_neq_bfalse isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin rename lemma_by_obid sqequalHypSubstitution isectElimination unionEquality hypothesisEquality atomEquality productElimination equalityTransitivity hypothesis equalitySymmetry independent_pairFormation isatomReduceTrue dependent_functionElimination because_Cache unionElimination instantiate independent_isectElimination independent_functionElimination sqequalRule voidElimination lambdaEquality universeEquality isect_memberEquality

Latex:
\mforall{}[T,S:Type].    (\mneg{}T  +  S  \mcap{}  Atom)



Date html generated: 2016_05_15-PM-10_08_05
Last ObjectModification: 2015_12_27-PM-06_00_38

Theory : eval!all


Home Index