Nuprl Lemma : fpf-compatible-triple
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[f,g,h:x:T fp-> Type].
  ({(g ⊆ h ⊕ f ⊕ g ∧ f ⊆ h ⊕ f ⊕ g) ∧ h ⊕ g ⊆ h ⊕ f ⊕ g ∧ h ⊕ f ⊆ h ⊕ f ⊕ g}) supposing (h || g and h || f and f || g)
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-compatible: f || g, 
fpf-sub: f ⊆ g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fpf-sub: f ⊆ g, 
guard: {T}, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
fpf-compatible: f || g, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
fpf-join-dom, 
fpf-join_wf, 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
or_wf, 
fpf-sub_witness, 
fpf-compatible_wf, 
fpf_wf, 
deq_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
fpf-ap_wf, 
fpf-join-ap-sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
inrFormation, 
applyEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addLevel, 
orFunctionality, 
because_Cache, 
independent_pairFormation, 
inlFormation, 
unionElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f,g,h:x:T  fp->  Type].
    (\{(g  \msubseteq{}  h  \moplus{}  f  \moplus{}  g  \mwedge{}  f  \msubseteq{}  h  \moplus{}  f  \moplus{}  g)  \mwedge{}  h  \moplus{}  g  \msubseteq{}  h  \moplus{}  f  \moplus{}  g  \mwedge{}  h  \moplus{}  f  \msubseteq{}  h  \moplus{}  f  \moplus{}  g\})  supposing 
          (h  ||  g  and 
          h  ||  f  and 
          f  ||  g)
Date html generated:
2018_05_21-PM-09_30_41
Last ObjectModification:
2018_02_09-AM-10_25_12
Theory : finite!partial!functions
Home
Index