Nuprl Lemma : fpf-compatible-update3
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[f,g,h:a:A fp-> B[a]].  h ⊕ f || h ⊕ g supposing f || g
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-compatible: f || g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
prop: ℙ, 
fpf-compatible: f || g, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
assert_wf, 
fpf-dom_wf, 
fpf-join_wf, 
top_wf, 
subtype-fpf2, 
fpf-compatible_wf, 
fpf_wf, 
deq_wf, 
bool_wf, 
fpf-ap_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
fpf-join-dom, 
fpf-join-ap-sq, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
baseClosed, 
independent_functionElimination, 
unionElimination, 
independent_pairFormation, 
equalityElimination
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g,h:a:A  fp->  B[a]].
    h  \moplus{}  f  ||  h  \moplus{}  g  supposing  f  ||  g
Date html generated:
2018_05_21-PM-09_28_45
Last ObjectModification:
2018_02_09-AM-10_23_55
Theory : finite!partial!functions
Home
Index