Nuprl Lemma : fpf-sub-join-right

[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> B[a]].  g ⊆ f ⊕ supposing || g


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-compatible: || g fpf-sub: f ⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fpf-sub: f ⊆ g all: x:A. B[x] implies:  Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} or: P ∨ Q prop: subtype_rel: A ⊆B top: Top squash: T true: True bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff fpf-compatible: || g
Lemmas referenced :  fpf-join-dom assert_wf fpf-dom_wf subtype-fpf2 top_wf equal_wf squash_wf true_wf fpf-ap_wf fpf-join-ap iff_weakening_equal fpf-sub_witness fpf-join_wf fpf-compatible_wf fpf_wf deq_wf bool_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity dependent_functionElimination hypothesis productElimination independent_functionElimination inrFormation independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache independent_pairFormation imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality functionEquality unionElimination equalityElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  B[a]].    g  \msubseteq{}  f  \moplus{}  g  supposing  f  ||  g



Date html generated: 2018_05_21-PM-09_22_17
Last ObjectModification: 2018_02_09-AM-10_18_39

Theory : finite!partial!functions


Home Index