Nuprl Lemma : l_disjoint-fpf-dom
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> Top]. ∀[L:A List].
  uiff(l_disjoint(A;fst(f);L);∀[a:A]. ¬(a ∈ L) supposing ↑a ∈ dom(f))
Proof
Definitions occuring in Statement : 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
l_disjoint: l_disjoint(T;l1;l2), 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
pi1: fst(t), 
not: ¬A, 
universe: Type
Definitions unfolded in proof : 
fpf-dom: x ∈ dom(f), 
l_disjoint: l_disjoint(T;l1;l2), 
fpf: a:A fp-> B[a], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
rev_implies: P ⇐ Q
Lemmas referenced : 
l_member_wf, 
assert_wf, 
deq-member_wf, 
pi1_wf_top, 
list_wf, 
subtype_rel_product, 
top_wf, 
all_wf, 
not_wf, 
and_wf, 
uall_wf, 
isect_wf, 
deq_wf, 
assert-deq-member
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
functionEquality, 
setEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairEquality, 
productEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  Top].  \mforall{}[L:A  List].
    uiff(l\_disjoint(A;fst(f);L);\mforall{}[a:A].  \mneg{}(a  \mmember{}  L)  supposing  \muparrow{}a  \mmember{}  dom(f))
Date html generated:
2018_05_21-PM-09_31_39
Last ObjectModification:
2018_02_09-AM-10_26_36
Theory : finite!partial!functions
Home
Index