Nuprl Lemma : pairs-fpf_wf
∀[A,B:Type]. ∀[eq1:EqDecider(A)]. ∀[eq2:EqDecider(B)]. ∀[L:(A × B) List]. (fpf(L) ∈ a:A fp-> B List)
Proof
Definitions occuring in Statement :
pairs-fpf: fpf(L)
,
fpf: a:A fp-> B[a]
,
list: T List
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
pairs-fpf: fpf(L)
,
fpf: a:A fp-> B[a]
,
eqof: eqof(d)
,
top: Top
,
all: ∀x:A. B[x]
,
prop: ℙ
,
deq: EqDecider(T)
,
pi1: fst(t)
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
pi2: snd(t)
,
bfalse: ff
Lemmas referenced :
remove-repeats_wf,
map_wf,
pi1_wf_top,
l_member_wf,
reduce_wf,
list_wf,
bool_wf,
eqtt_to_assert,
safe-assert-deq,
insert_wf,
equal_wf,
nil_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
dependent_pairEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
productEquality,
lambdaEquality,
productElimination,
independent_pairEquality,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
lambdaFormation,
setElimination,
rename,
because_Cache,
applyEquality,
sqequalRule,
unionElimination,
equalityElimination,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
setEquality,
functionEquality,
axiomEquality,
universeEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[eq1:EqDecider(A)]. \mforall{}[eq2:EqDecider(B)]. \mforall{}[L:(A \mtimes{} B) List].
(fpf(L) \mmember{} a:A fp-> B List)
Date html generated:
2018_05_21-PM-09_31_51
Last ObjectModification:
2018_02_09-AM-10_26_44
Theory : finite!partial!functions
Home
Index