Nuprl Lemma : subtype-fpf-cap-void
∀[T,X:Type]. ∀[eq:EqDecider(X)]. ∀[f,g:x:X fp-> Type]. ∀[x:X].  f(x)?Void ⊆r g(x)?T supposing f ⊆ g
Proof
Definitions occuring in Statement : 
fpf-sub: f ⊆ g, 
fpf-cap: f(x)?z, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
void: Void, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
guard: {T}, 
fpf-cap: f(x)?z, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
fpf-sub: f ⊆ g, 
cand: A c∧ B, 
not: ¬A, 
false: False
Lemmas referenced : 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
bool_wf, 
subtype_rel-equal, 
fpf-ap_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
fpf-cap_wf, 
fpf-sub_wf, 
fpf_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
instantiate, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
isect_memberFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality
Latex:
\mforall{}[T,X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].  \mforall{}[x:X].    f(x)?Void  \msubseteq{}r  g(x)?T  supposing  f  \msubseteq{}  g
Date html generated:
2018_05_21-PM-09_19_29
Last ObjectModification:
2018_02_09-AM-10_17_36
Theory : finite!partial!functions
Home
Index