Nuprl Lemma : base-member-of-tagged+
∀[T,B:Type]. ∀[tg,a:Atom]. ∀[x:Base].
  (mk-tagged(tg;x) ∈ T |+ a:B) supposing ((¬(tg = a ∈ Atom)) and (mk-tagged(tg;x) ∈ T))
Proof
Definitions occuring in Statement : 
mk-tagged: mk-tagged(tg;x)
, 
tagged+: T |+ z:B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
base: Base
, 
atom: Atom
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
tagged+: T |+ z:B
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
top: Top
Lemmas referenced : 
mk-tagged_wf_unequal, 
iff_transitivity, 
not_wf, 
equal-wf-base, 
atom_subtype_base, 
assert_wf, 
eq_atom_wf, 
bnot_wf, 
assert_of_eq_atom, 
iff_weakening_uiff, 
assert_of_bnot, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isect_memberEquality, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
atomEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
impliesFunctionality, 
productElimination, 
equalitySymmetry, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality
Latex:
\mforall{}[T,B:Type].  \mforall{}[tg,a:Atom].  \mforall{}[x:Base].
    (mk-tagged(tg;x)  \mmember{}  T  |+  a:B)  supposing  ((\mneg{}(tg  =  a))  and  (mk-tagged(tg;x)  \mmember{}  T))
Date html generated:
2018_05_21-PM-08_43_46
Last ObjectModification:
2017_07_26-PM-06_07_43
Theory : general
Home
Index