Nuprl Lemma : base-member-of-tagged+

[T,B:Type]. ∀[tg,a:Atom]. ∀[x:Base].
  (mk-tagged(tg;x) ∈ |+ a:B) supposing ((¬(tg a ∈ Atom)) and (mk-tagged(tg;x) ∈ T))


Proof




Definitions occuring in Statement :  mk-tagged: mk-tagged(tg;x) tagged+: |+ z:B uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T base: Base atom: Atom universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a tagged+: |+ z:B isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B implies:  Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A uiff: uiff(P;Q) prop: rev_implies:  Q false: False top: Top
Lemmas referenced :  mk-tagged_wf_unequal iff_transitivity not_wf equal-wf-base atom_subtype_base assert_wf eq_atom_wf bnot_wf assert_of_eq_atom iff_weakening_uiff assert_of_bnot base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isect_memberEquality sqequalHypSubstitution unionElimination thin equalityElimination hypothesis extract_by_obid isectElimination cumulativity hypothesisEquality independent_isectElimination atomEquality applyEquality because_Cache independent_functionElimination independent_pairFormation lambdaFormation impliesFunctionality productElimination equalitySymmetry voidElimination voidEquality axiomEquality equalityTransitivity baseApply closedConclusion baseClosed universeEquality

Latex:
\mforall{}[T,B:Type].  \mforall{}[tg,a:Atom].  \mforall{}[x:Base].
    (mk-tagged(tg;x)  \mmember{}  T  |+  a:B)  supposing  ((\mneg{}(tg  =  a))  and  (mk-tagged(tg;x)  \mmember{}  T))



Date html generated: 2018_05_21-PM-08_43_46
Last ObjectModification: 2017_07_26-PM-06_07_43

Theory : general


Home Index