Nuprl Lemma : count-all
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  count(P;L) ~ ||L|| supposing (∀x∈L.↑(P x))
Proof
Definitions occuring in Statement : 
count: count(P;L)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
sq_type: SQType(T)
Lemmas referenced : 
bool_wf, 
list_wf, 
l_member_wf, 
assert_wf, 
l_all_wf2, 
length_wf, 
filter_trivial, 
count-length-filter, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
le_wf, 
nat_properties, 
count_wf, 
decidable__le, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
intEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    count(P;L)  \msim{}  ||L||  supposing  (\mforall{}x\mmember{}L.\muparrow{}(P  x))
Date html generated:
2016_05_15-PM-03_40_28
Last ObjectModification:
2016_01_16-AM-10_52_04
Theory : general
Home
Index