Nuprl Lemma : count-all

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  count(P;L) ||L|| supposing (∀x∈L.↑(P x))


Proof




Definitions occuring in Statement :  count: count(P;L) l_all: (∀x∈L.P[x]) length: ||as|| list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q guard: {T} prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q sq_type: SQType(T)
Lemmas referenced :  bool_wf list_wf l_member_wf assert_wf l_all_wf2 length_wf filter_trivial count-length-filter int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf nat_properties count_wf decidable__le int_subtype_base set_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination sqequalRule hypothesis dependent_functionElimination unionElimination hypothesisEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename setEquality intEquality natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality independent_functionElimination sqequalAxiom functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    count(P;L)  \msim{}  ||L||  supposing  (\mforall{}x\mmember{}L.\muparrow{}(P  x))



Date html generated: 2016_05_15-PM-03_40_28
Last ObjectModification: 2016_01_16-AM-10_52_04

Theory : general


Home Index