Nuprl Lemma : derived-seq_wf

[T:Type]. ∀[f:ℕ ⟶ T]. ∀[s:k:ℕ × (ℕk ⟶ ℕ)].  (derived-seq(f;s) ∈ ℕ ⟶ (k:ℕ × (ℕk ⟶ T)))


Proof




Definitions occuring in Statement :  derived-seq: derived-seq(f;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  derived-seq: derived-seq(f;s) uall: [x:A]. B[x] member: t ∈ T nat: subtype_rel: A ⊆B all: x:A. B[x] implies:  Q guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top prop:
Lemmas referenced :  nat_wf int_seg_wf add_nat_wf nat_properties int_seg_properties decidable__le add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productElimination thin lambdaEquality dependent_pairEquality hypothesisEquality applyEquality functionExtensionality extract_by_obid hypothesis dependent_set_memberEquality addEquality sqequalHypSubstitution setElimination rename isectElimination natural_numberEquality because_Cache lambdaFormation equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination functionEquality cumulativity axiomEquality productEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].  \mforall{}[s:k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  \mBbbN{})].    (derived-seq(f;s)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  (k:\mBbbN{}  \mtimes{}  (\mBbbN{}k  {}\mrightarrow{}  T)))



Date html generated: 2018_05_21-PM-07_41_51
Last ObjectModification: 2017_07_26-PM-05_15_43

Theory : general


Home Index