Nuprl Lemma : int-sqrt-ext
∀x:ℕ. (∃r:ℕ [(((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))])
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
genrec-ap: genrec-ap, 
decidable__less_than', 
decidable__and, 
iff_preserves_decidability, 
decidable_functionality, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
decidable__squash, 
decidable__lt, 
genrec: genrec, 
natrec: natrec, 
div_nat_induction-ext, 
int-sq-root, 
member: t ∈ T
Lemmas referenced : 
lifting-strict-less, 
lifting-strict-decide, 
equal_wf, 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-spread, 
int-sq-root, 
decidable__less_than', 
decidable__and, 
iff_preserves_decidability, 
decidable_functionality, 
decidable__squash, 
decidable__lt, 
div_nat_induction-ext
Rules used in proof : 
because_Cache, 
decideExceptionCases, 
independent_functionElimination, 
dependent_functionElimination, 
sqleReflexivity, 
unionElimination, 
unionEquality, 
equalitySymmetry, 
equalityTransitivity, 
callbyvalueDecide, 
inlFormation, 
exceptionSqequal, 
imageElimination, 
imageMemberEquality, 
inrFormation, 
applyExceptionCases, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueApply, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbN{}.  (\mexists{}r:\mBbbN{}  [(((r  *  r)  \mleq{}  x)  \mwedge{}  x  <  (r  +  1)  *  (r  +  1))])
Date html generated:
2018_05_21-PM-07_49_54
Last ObjectModification:
2018_05_19-AM-07_44_38
Theory : general
Home
Index