Nuprl Lemma : iseg_product-positive
∀[i,j:ℕ].  (0 < iseg_product(i;j)) supposing ((i ≤ j) and 0 < i)
Proof
Definitions occuring in Statement : 
iseg_product: iseg_product(i;j), 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
iseg_product: iseg_product(i;j), 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_wf, 
less_than_wf, 
lelt_wf, 
decidable__lt, 
iseg_product_wf, 
member-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtract_wf, 
combinations-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
because_Cache, 
productElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[i,j:\mBbbN{}].    (0  <  iseg\_product(i;j))  supposing  ((i  \mleq{}  j)  and  0  <  i)
Date html generated:
2016_05_15-PM-06_01_37
Last ObjectModification:
2016_01_16-PM-00_39_54
Theory : general
Home
Index