Nuprl Lemma : combinations-positive

[n:ℕ]. ∀[m:ℤ].  0 < C(n;m) supposing n ≤ m


Proof




Definitions occuring in Statement :  combinations: C(n;m) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt less_than: a < b squash: T true: True decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: subtype_rel: A ⊆B uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q nat_plus: +
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf member-less_than combinations_wf_int le_wf combinations-step false_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot mul_bounds_1b equal_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality because_Cache imageMemberEquality baseClosed unionElimination equalityElimination baseApply closedConclusion applyEquality productElimination impliesFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbZ{}].    0  <  C(n;m)  supposing  n  \mleq{}  m



Date html generated: 2018_05_21-PM-08_09_47
Last ObjectModification: 2017_07_26-PM-05_45_21

Theory : general


Home Index