Nuprl Lemma : nil_member-variant

[T,A:Type].  ∀x:T. (x ∈ []) ⇐⇒ False supposing A ⊆T


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nil: [] uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q false: False universe: Type
Definitions unfolded in proof :  l_member: (x ∈ l) uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q implies:  Q false: False select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] exists: x:A. B[x] cand: c∧ B nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A prop: so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q so_apply: x[s] rev_implies:  Q
Lemmas referenced :  length_of_nil_lemma stuck-spread base_wf nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf exists_wf nat_wf less_than_wf length_wf nil_wf equal_wf select_wf decidable__le intformnot_wf int_formula_prop_not_lemma false_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename independent_pairFormation sqequalHypSubstitution extract_by_obid isectElimination baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality productElimination hypothesisEquality setElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination computeAll productEquality because_Cache cumulativity applyEquality unionElimination universeEquality

Latex:
\mforall{}[T,A:Type].    \mforall{}x:T.  (x  \mmember{}  [])  \mLeftarrow{}{}\mRightarrow{}  False  supposing  A  \msubseteq{}r  T



Date html generated: 2018_05_21-PM-06_33_17
Last ObjectModification: 2017_07_26-PM-04_52_09

Theory : general


Home Index