Nuprl Lemma : nil_member-variant
∀[T,A:Type]. ∀x:T. (x ∈ [])
⇐⇒ False supposing A ⊆r T
Proof
Definitions occuring in Statement :
l_member: (x ∈ l)
,
nil: []
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
false: False
,
universe: Type
Definitions unfolded in proof :
l_member: (x ∈ l)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
false: False
,
select: L[n]
,
nil: []
,
it: ⋅
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
nat: ℕ
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
Lemmas referenced :
length_of_nil_lemma,
stuck-spread,
base_wf,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
exists_wf,
nat_wf,
less_than_wf,
length_wf,
nil_wf,
equal_wf,
select_wf,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
false_wf,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
axiomEquality,
hypothesis,
thin,
rename,
independent_pairFormation,
sqequalHypSubstitution,
extract_by_obid,
isectElimination,
baseClosed,
independent_isectElimination,
isect_memberEquality,
voidElimination,
voidEquality,
productElimination,
hypothesisEquality,
setElimination,
natural_numberEquality,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
computeAll,
productEquality,
because_Cache,
cumulativity,
applyEquality,
unionElimination,
universeEquality
Latex:
\mforall{}[T,A:Type]. \mforall{}x:T. (x \mmember{} []) \mLeftarrow{}{}\mRightarrow{} False supposing A \msubseteq{}r T
Date html generated:
2018_05_21-PM-06_33_17
Last ObjectModification:
2017_07_26-PM-04_52_09
Theory : general
Home
Index