Nuprl Lemma : p-first-cons
∀[A,B:Type]. ∀[L:(A ⟶ (B + Top)) List]. ∀[f:A ⟶ (B + Top)]. (p-first([f / L]) = [f?p-first(L)] ∈ (A ⟶ (B + Top)))
Proof
Definitions occuring in Statement :
p-conditional: [f?g]
,
p-first: p-first(L)
,
cons: [a / b]
,
list: T List
,
uall: ∀[x:A]. B[x]
,
top: Top
,
function: x:A ⟶ B[x]
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
append: as @ bs
,
all: ∀x:A. B[x]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
list_ind_cons_lemma,
list_ind_nil_lemma,
top_wf,
list_wf,
equal_wf,
squash_wf,
true_wf,
p-first-append,
cons_wf,
nil_wf,
p-conditional_wf,
p-first_wf,
iff_weakening_equal,
p-first-singleton,
p-conditional-to-p-first
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
functionEquality,
cumulativity,
hypothesisEquality,
unionEquality,
isectElimination,
axiomEquality,
because_Cache,
universeEquality,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
productElimination,
independent_functionElimination
Latex:
\mforall{}[A,B:Type]. \mforall{}[L:(A {}\mrightarrow{} (B + Top)) List]. \mforall{}[f:A {}\mrightarrow{} (B + Top)]. (p-first([f / L]) = [f?p-first(L)])
Date html generated:
2018_05_21-PM-06_44_28
Last ObjectModification:
2017_07_26-PM-04_55_07
Theory : general
Home
Index