Nuprl Lemma : p-first-cons

[A,B:Type]. ∀[L:(A ⟶ (B Top)) List]. ∀[f:A ⟶ (B Top)].  (p-first([f L]) [f?p-first(L)] ∈ (A ⟶ (B Top)))


Proof




Definitions occuring in Statement :  p-conditional: [f?g] p-first: p-first(L) cons: [a b] list: List uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma top_wf list_wf equal_wf squash_wf true_wf p-first-append cons_wf nil_wf p-conditional_wf p-first_wf iff_weakening_equal p-first-singleton p-conditional-to-p-first
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis functionEquality cumulativity hypothesisEquality unionEquality isectElimination axiomEquality because_Cache universeEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry functionExtensionality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:(A  {}\mrightarrow{}  (B  +  Top))  List].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-first([f  /  L])  =  [f?p-first(L)])



Date html generated: 2018_05_21-PM-06_44_28
Last ObjectModification: 2017_07_26-PM-04_55_07

Theory : general


Home Index