Nuprl Lemma : rotate-by-trivial-test

[n:ℕ]. ∀[x:ℕn].  (((rotate-by(n;0) x) x ∈ ℕn) ∧ ((rotate-by(n;n) x) x ∈ ℕn))


Proof




Definitions occuring in Statement :  rotate-by: rotate-by(n;i) int_seg: {i..j-} nat: uall: [x:A]. B[x] and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B lelt: i ≤ j < k guard: {T} nat: int_seg: {i..j-} ge: i ≥  all: x:A. B[x] prop: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  nat_wf int_seg_wf rotate-by-trivial int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt lelt_wf false_wf le_wf rotate-by_wf decidable__le nat_properties int_seg_properties
Rules used in proof :  comment sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination dependent_functionElimination applyEquality dependent_set_memberEquality because_Cache sqequalRule lambdaFormation unionElimination equalityTransitivity equalitySymmetry lambdaEquality setEquality intEquality independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_pairEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbN{}n].    (((rotate-by(n;0)  x)  =  x)  \mwedge{}  ((rotate-by(n;n)  x)  =  x))



Date html generated: 2016_05_15-PM-06_14_46
Last ObjectModification: 2016_01_16-PM-00_48_48

Theory : general


Home Index