Nuprl Lemma : rotate-by-trivial
∀[n:ℕ]. ∀[x:ℕn].  (((rotate-by(n;0) x) = x ∈ ℕn) ∧ ((rotate-by(n;n) x) = x ∈ ℕn))
Proof
Definitions occuring in Statement : 
rotate-by: rotate-by(n;i)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rotate-by-id, 
int_seg_wf, 
nat_wf, 
false_wf, 
le_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rotate-by-is-id, 
any_divs_zero, 
iff_weakening_equal, 
less_than_wf, 
divides_reflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
natural_numberEquality, 
setElimination, 
rename, 
isect_memberEquality, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
functionEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
functionExtensionality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbN{}n].    (((rotate-by(n;0)  x)  =  x)  \mwedge{}  ((rotate-by(n;n)  x)  =  x))
Date html generated:
2018_05_21-PM-08_18_09
Last ObjectModification:
2017_07_26-PM-05_51_38
Theory : general
Home
Index