Nuprl Lemma : rotate-by-is-id

[n,i:ℕ].  rotate-by(n;i) x.x) ∈ (ℕn ⟶ ℕn) supposing i


Proof




Definitions occuring in Statement :  rotate-by: rotate-by(n;i) divides: a int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q prop: nat: all: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top iff: ⇐⇒ Q
Lemmas referenced :  nequal_wf equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties divides_iff_rem_zero nat_wf divides_wf less_than_wf rotate-by-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination hypothesis natural_numberEquality setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination dependent_set_memberEquality lambdaFormation dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination

Latex:
\mforall{}[n,i:\mBbbN{}].    rotate-by(n;i)  =  (\mlambda{}x.x)  supposing  n  |  i



Date html generated: 2016_05_15-PM-06_14_10
Last ObjectModification: 2016_01_16-PM-00_48_33

Theory : general


Home Index