Nuprl Lemma : rotate-by-is-id
∀[n,i:ℕ].  rotate-by(n;i) = (λx.x) ∈ (ℕn ⟶ ℕn) supposing n | i
Proof
Definitions occuring in Statement : 
rotate-by: rotate-by(n;i)
, 
divides: b | a
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nequal_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
divides_iff_rem_zero, 
nat_wf, 
divides_wf, 
less_than_wf, 
rotate-by-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination
Latex:
\mforall{}[n,i:\mBbbN{}].    rotate-by(n;i)  =  (\mlambda{}x.x)  supposing  n  |  i
Date html generated:
2016_05_15-PM-06_14_10
Last ObjectModification:
2016_01_16-PM-00_48_33
Theory : general
Home
Index