Nuprl Lemma : rotate-by-id
∀[n,i:ℕ].  uiff(rotate-by(n;i) = (λx.x) ∈ (ℕn ⟶ ℕn);(i rem n) = 0 ∈ ℤ supposing 0 < n)
Proof
Definitions occuring in Statement : 
rotate-by: rotate-by(n;i)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rotate-by: rotate-by(n;i)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
sq_type: SQType(T)
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
less_than_wf, 
equal-wf-T-base, 
int_seg_wf, 
rotate-by_wf, 
isect_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nat_wf, 
decidable__equal_int, 
intformnot_wf, 
int_formula_prop_not_lemma, 
false_wf, 
lelt_wf, 
int_seg_properties, 
zero-add, 
decidable__lt, 
intformle_wf, 
int_formula_prop_le_lemma, 
rem_addition, 
int_seg_subtype_nat, 
less_than_transitivity2, 
subtype_base_sq, 
int_subtype_base, 
decidable__le, 
equal-wf-base, 
add_nat_wf, 
remainder_wf, 
le_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal_wf, 
add-zero, 
rem_bounds_1, 
squash_wf, 
true_wf, 
rem_base_case, 
add_functionality_wrt_eq, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
baseClosed, 
lambdaEquality, 
remainderEquality, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
independent_pairEquality, 
applyLambdaEquality, 
applyEquality, 
functionExtensionality, 
unionElimination, 
dependent_set_memberEquality, 
instantiate, 
cumulativity, 
independent_functionElimination, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[n,i:\mBbbN{}].    uiff(rotate-by(n;i)  =  (\mlambda{}x.x);(i  rem  n)  =  0  supposing  0  <  n)
Date html generated:
2018_05_21-PM-08_17_44
Last ObjectModification:
2017_07_26-PM-05_51_11
Theory : general
Home
Index