Nuprl Lemma : rotate-by-id

[n,i:ℕ].  uiff(rotate-by(n;i) x.x) ∈ (ℕn ⟶ ℕn);(i rem n) 0 ∈ ℤ supposing 0 < n)


Proof




Definitions occuring in Statement :  rotate-by: rotate-by(n;i) int_seg: {i..j-} nat: less_than: a < b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] remainder: rem m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: nat: so_lambda: λ2x.t[x] nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top so_apply: x[s] decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) rotate-by: rotate-by(n;i) guard: {T} subtype_rel: A ⊆B nat_plus: + sq_type: SQType(T) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  less_than_wf equal-wf-T-base int_seg_wf rotate-by_wf isect_wf nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nat_wf decidable__equal_int intformnot_wf int_formula_prop_not_lemma false_wf lelt_wf int_seg_properties zero-add decidable__lt intformle_wf int_formula_prop_le_lemma rem_addition int_seg_subtype_nat less_than_transitivity2 subtype_base_sq int_subtype_base decidable__le equal-wf-base add_nat_wf remainder_wf le_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma equal_wf add-zero rem_bounds_1 squash_wf true_wf rem_base_case add_functionality_wrt_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality baseClosed lambdaEquality remainderEquality lambdaFormation independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality computeAll productElimination independent_pairEquality applyLambdaEquality applyEquality functionExtensionality unionElimination dependent_set_memberEquality instantiate cumulativity independent_functionElimination addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[n,i:\mBbbN{}].    uiff(rotate-by(n;i)  =  (\mlambda{}x.x);(i  rem  n)  =  0  supposing  0  <  n)



Date html generated: 2018_05_21-PM-08_17_44
Last ObjectModification: 2017_07_26-PM-05_51_11

Theory : general


Home Index