Nuprl Lemma : sum-map_wf

[T:Type]. ∀[f:T ⟶ ℤ]. ∀[L:T List].  f[x] for x ∈ L ∈ ℤ)


Proof




Definitions occuring in Statement :  sum-map: Σf[x] for x ∈ L list: List uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sum-map: Σf[x] for x ∈ L so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T
Lemmas referenced :  list_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf length_wf_nat sum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality because_Cache setElimination rename independent_isectElimination natural_numberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List].    (\mSigma{}f[x]  for  x  \mmember{}  L  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-06_25_00
Last ObjectModification: 2016_01_16-PM-00_55_55

Theory : general


Home Index