Nuprl Lemma : up-set-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[whole:fset(T)]. ∀[le:T ⟶ T ⟶ ℙ].
  up-set-lattice(T;eq;whole;x,y.le[x;y]) ∈ BoundedDistributiveLattice supposing (∀x:T. x ∈ whole) ∧ Trans(T;x,y.le[x;y])
Proof
Definitions occuring in Statement : 
up-set-lattice: up-set-lattice(T;eq;whole;x,y.le[x; y])
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
trans: Trans(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
up-set-lattice: up-set-lattice(T;eq;whole;x,y.le[x; y])
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
top: Top
, 
false: False
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
sub-powerset-lattice_wf, 
all_wf, 
fset-member_wf, 
fset_wf, 
or_wf, 
member-fset-union, 
fset-union_wf, 
and_wf, 
member-fset-intersection, 
fset-intersection_wf, 
mem_empty_lemma, 
false_wf, 
trans_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
functionEquality, 
hypothesis, 
applyEquality, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
unionElimination, 
inlFormation, 
inrFormation, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[whole:fset(T)].  \mforall{}[le:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    up-set-lattice(T;eq;whole;x,y.le[x;y])  \mmember{}  BoundedDistributiveLattice 
    supposing  (\mforall{}x:T.  x  \mmember{}  whole)  \mwedge{}  Trans(T;x,y.le[x;y])
Date html generated:
2020_05_20-AM-08_47_43
Last ObjectModification:
2015_12_28-PM-02_00_32
Theory : lattices
Home
Index