Nuprl Lemma : causal_order_reflexive
∀[T:Type]. ∀L:T List. ∀[R:ℕ||L|| ⟶ ℕ||L|| ⟶ ℙ]. ∀[P:ℕ||L|| ⟶ ℙ].  (Refl(ℕ||L||)(R _1 _2) ⇒ causal_order(L;R;P;P))
Proof
Definitions occuring in Statement : 
causal_order: causal_order(L;R;P;Q), 
length: ||as||, 
list: T List, 
refl: Refl(T;x,y.E[x; y]), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
causal_order: causal_order(L;R;P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
subtype_rel_self, 
int_seg_wf, 
refl_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productEquality, 
applyEquality, 
instantiate, 
universeEquality, 
functionIsType, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[R:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].    (Refl(\mBbbN{}||L||)(R  $_{1}$  $\mbackslash{}\000Cff5f{2}$)  {}\mRightarrow{}  causal\_order(L;R;P;P))
Date html generated:
2019_10_15-AM-10_57_34
Last ObjectModification:
2018_09_27-AM-09_52_41
Theory : list!
Home
Index