Nuprl Lemma : causal_order_reflexive

[T:Type]. ∀L:T List. ∀[R:ℕ||L|| ⟶ ℕ||L|| ⟶ ℙ]. ∀[P:ℕ||L|| ⟶ ℙ].  (Refl(ℕ||L||)(R _1 _2)  causal_order(L;R;P;P))


Proof




Definitions occuring in Statement :  causal_order: causal_order(L;R;P;Q) length: ||as|| list: List refl: Refl(T;x,y.E[x; y]) int_seg: {i..j-} uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  causal_order: causal_order(L;R;P;Q) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  int_seg_properties length_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf le_wf subtype_rel_self int_seg_wf refl_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation dependent_pairFormation hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis setElimination rename productElimination dependent_functionElimination because_Cache unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation productEquality applyEquality instantiate universeEquality functionIsType universeIsType inhabitedIsType

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[R:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbP{}].    (Refl(\mBbbN{}||L||)(R  $_{1}$  $\mbackslash{}\000Cff5f{2}$)  {}\mRightarrow{}  causal\_order(L;R;P;P))



Date html generated: 2019_10_15-AM-10_57_34
Last ObjectModification: 2018_09_27-AM-09_52_41

Theory : list!


Home Index