Nuprl Lemma : det-multiple-col-ops
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[a:ℕn]. ∀[k:|r|].
  (|matrix(if y=a then M[x,y] else (M[x,y] +r (k * M[x,a])))| = |M| ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-det: |M|
, 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
int_eq: if a=b then c else d
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
rng: Rng
, 
crng: CRng
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_seg: {i..j-}
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
matrix-transpose: M'
Lemmas referenced : 
crng_wf, 
nat_wf, 
matrix_wf, 
int_seg_wf, 
rng_car_wf, 
true_wf, 
squash_wf, 
equal_wf, 
matrix-transpose_wf, 
det-multiple-row-ops, 
iff_weakening_equal, 
det-transpose, 
rng_times_wf, 
rng_plus_wf, 
infix_ap_wf, 
matrix-ap_wf, 
mx_wf, 
matrix-det_wf, 
matrix_ap_mx_lemma
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
sqequalRule, 
equalitySymmetry, 
hyp_replacement, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyLambdaEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
int_eqEquality, 
voidEquality, 
voidElimination, 
dependent_functionElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a:\mBbbN{}n].  \mforall{}[k:|r|].
    (|matrix(if  y=a  then  M[x,y]  else  (M[x,y]  +r  (k  *  M[x,a])))|  =  |M|)
Date html generated:
2018_05_21-PM-09_37_14
Last ObjectModification:
2018_01_02-PM-04_19_11
Theory : matrices
Home
Index