Nuprl Lemma : det-multiple-col-ops
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[a:ℕn]. ∀[k:|r|].
(|matrix(if y=a then M[x,y] else (M[x,y] +r (k * M[x,a])))| = |M| ∈ |r|)
Proof
Definitions occuring in Statement :
matrix-det: |M|
,
mx: matrix(M[x; y])
,
matrix-ap: M[i,j]
,
matrix: Matrix(n;m;r)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
int_eq: if a=b then c else d
,
natural_number: $n
,
equal: s = t ∈ T
,
crng: CRng
,
rng_times: *
,
rng_plus: +r
,
rng_car: |r|
Definitions unfolded in proof :
true: True
,
squash: ↓T
,
prop: ℙ
,
rng: Rng
,
crng: CRng
,
nat: ℕ
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
int_seg: {i..j-}
,
so_lambda: λ2x y.t[x; y]
,
infix_ap: x f y
,
top: Top
,
all: ∀x:A. B[x]
,
matrix-transpose: M'
Lemmas referenced :
crng_wf,
nat_wf,
matrix_wf,
int_seg_wf,
rng_car_wf,
true_wf,
squash_wf,
equal_wf,
matrix-transpose_wf,
det-multiple-row-ops,
iff_weakening_equal,
det-transpose,
rng_times_wf,
rng_plus_wf,
infix_ap_wf,
matrix-ap_wf,
mx_wf,
matrix-det_wf,
matrix_ap_mx_lemma
Rules used in proof :
axiomEquality,
isect_memberEquality,
baseClosed,
imageMemberEquality,
natural_numberEquality,
universeEquality,
equalityTransitivity,
imageElimination,
lambdaEquality,
applyEquality,
sqequalRule,
equalitySymmetry,
hyp_replacement,
hypothesis,
because_Cache,
rename,
setElimination,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
applyLambdaEquality,
independent_functionElimination,
productElimination,
independent_isectElimination,
int_eqEquality,
voidEquality,
voidElimination,
dependent_functionElimination
Latex:
\mforall{}[r:CRng]. \mforall{}[n:\mBbbN{}]. \mforall{}[M:Matrix(n;n;r)]. \mforall{}[a:\mBbbN{}n]. \mforall{}[k:|r|].
(|matrix(if y=a then M[x,y] else (M[x,y] +r (k * M[x,a])))| = |M|)
Date html generated:
2018_05_21-PM-09_37_14
Last ObjectModification:
2018_01_02-PM-04_19_11
Theory : matrices
Home
Index