Nuprl Lemma : det-multiple-row-ops
∀[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[a:ℕn]. ∀[k:|r|].
  (|matrix(if x=a then M[x,y] else (M[x,y] +r (k * M[a,y])))| = |M| ∈ |r|)
Proof
Definitions occuring in Statement : 
matrix-det: |M|
, 
mx: matrix(M[x; y])
, 
matrix-ap: M[i,j]
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
int_eq: if a=b then c else d
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
nat: ℕ
, 
rng: Rng
, 
crng: CRng
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
true: True
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
int_seg: {i..j-}
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
matrix-ap: M[i,j]
, 
matrix: Matrix(n;m;r)
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
row-op: row-op(r;a;b;k;M)
Lemmas referenced : 
crng_wf, 
nat_wf, 
matrix_wf, 
int_seg_wf, 
rng_car_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
matrix-ap_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_seg_properties, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
matrix_ap_mx_lemma, 
rng_wf, 
true_wf, 
squash_wf, 
matrix-det_wf, 
decidable__lt, 
decidable__equal_int, 
rng_times_wf, 
rng_plus_wf, 
infix_ap_wf, 
neg_assert_of_eq_int, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_eq_int, 
eq_int_wf, 
rng_sig_wf, 
mx_wf, 
lelt_wf, 
det-row-op
Rules used in proof : 
natural_numberEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
intWeakElimination, 
lambdaFormation, 
baseClosed, 
imageMemberEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
productElimination, 
equalityElimination, 
functionExtensionality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
int_eqReduceFalseSq, 
int_eqReduceTrueSq, 
functionEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a:\mBbbN{}n].  \mforall{}[k:|r|].
    (|matrix(if  x=a  then  M[x,y]  else  (M[x,y]  +r  (k  *  M[a,y])))|  =  |M|)
Date html generated:
2018_05_21-PM-09_37_11
Last ObjectModification:
2018_01_02-PM-03_59_43
Theory : matrices
Home
Index