Nuprl Lemma : det-multiple-row-ops

[r:CRng]. ∀[n:ℕ]. ∀[M:Matrix(n;n;r)]. ∀[a:ℕn]. ∀[k:|r|].
  (|matrix(if x=a then M[x,y] else (M[x,y] +r (k M[a,y])))| |M| ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-det: |M| mx: matrix(M[x; y]) matrix-ap: M[i,j] matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uall: [x:A]. B[x] infix_ap: y int_eq: if a=b then else d natural_number: $n equal: t ∈ T crng: CRng rng_times: * rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  nat: rng: Rng crng: CRng member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q decidable: Dec(P) prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q all: x:A. B[x] true: True assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff lelt: i ≤ j < k guard: {T} ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] matrix-ap: M[i,j] matrix: Matrix(n;m;r) squash: T nequal: a ≠ b ∈  row-op: row-op(r;a;b;k;M)
Lemmas referenced :  crng_wf nat_wf matrix_wf int_seg_wf rng_car_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties matrix-ap_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_seg_properties assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf matrix_ap_mx_lemma rng_wf true_wf squash_wf matrix-det_wf decidable__lt decidable__equal_int rng_times_wf rng_plus_wf infix_ap_wf neg_assert_of_eq_int int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eq_int_wf rng_sig_wf mx_wf lelt_wf det-row-op
Rules used in proof :  natural_numberEquality because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination independent_pairFormation voidEquality voidElimination dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination intWeakElimination lambdaFormation baseClosed imageMemberEquality cumulativity instantiate promote_hyp productElimination equalityElimination functionExtensionality equalitySymmetry equalityTransitivity imageElimination applyEquality int_eqReduceFalseSq int_eqReduceTrueSq functionEquality dependent_set_memberEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[M:Matrix(n;n;r)].  \mforall{}[a:\mBbbN{}n].  \mforall{}[k:|r|].
    (|matrix(if  x=a  then  M[x,y]  else  (M[x,y]  +r  (k  *  M[a,y])))|  =  |M|)



Date html generated: 2018_05_21-PM-09_37_11
Last ObjectModification: 2018_01_02-PM-03_59_43

Theory : matrices


Home Index