Nuprl Lemma : scalar-product-add-right
∀[r:Rng]. ∀[n:ℕ]. ∀[a,b,c:ℕn ⟶ |r|].  ((c . (a + b)) = ((c . a) +r (c . b)) ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-product: (a . b)
, 
vector-add: (a + b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
rng: Rng
, 
infix_ap: x f y
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
vector-add: (a + b)
, 
scalar-product: (a . b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
nat_wf, 
rng_car_wf, 
true_wf, 
squash_wf, 
iff_weakening_equal, 
int_seg_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
rng_sum_plus, 
rng_times_wf, 
infix_ap_wf, 
rng_sum_wf, 
equal_wf, 
rng_times_over_plus
Rules used in proof : 
axiomEquality, 
functionEquality, 
productElimination, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
functionExtensionality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
independent_isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbN{}n  {}\mrightarrow{}  |r|].    ((c  .  (a  +  b))  =  ((c  .  a)  +r  (c  .  b)))
Date html generated:
2018_05_21-PM-09_42_12
Last ObjectModification:
2017_12_22-PM-01_27_13
Theory : matrices
Home
Index