Nuprl Lemma : scalar-product-mul

[r:Rng]. ∀[n:ℕ]. ∀[a,b:ℕn ⟶ |r|]. ∀[c:|r|].  (((c*a) b) (c (a b)) ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-product: (a b) vector-mul: (c*a) int_seg: {i..j-} nat: uall: [x:A]. B[x] infix_ap: y function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T rng: Rng rng_times: * rng_car: |r|
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True infix_ap: y and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  uimplies: supposing a so_apply: x[s] rng: Rng so_lambda: λ2x.t[x] nat: prop: squash: T scalar-product: (a b) member: t ∈ T uall: [x:A]. B[x] vector-mul: (c*a)
Lemmas referenced :  rng_wf nat_wf iff_weakening_equal int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties rng_times_sum_l int_seg_wf vector-mul_wf rng_times_wf rng_car_wf infix_ap_wf rng_sum_wf true_wf squash_wf equal_wf rng_times_assoc
Rules used in proof :  axiomEquality functionEquality productElimination baseClosed imageMemberEquality independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation unionElimination dependent_functionElimination independent_isectElimination functionExtensionality sqequalRule rename setElimination natural_numberEquality because_Cache universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  |r|].  \mforall{}[c:|r|].    (((c*a)  .  b)  =  (c  *  (a  .  b)))



Date html generated: 2018_05_21-PM-09_42_04
Last ObjectModification: 2017_12_20-PM-03_57_08

Theory : matrices


Home Index