Nuprl Lemma : scalar-triple-product-symmetry
∀[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (|a,b,c| = |b,c,a| ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-triple-product: |a,b,c|, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T, 
crng: CRng, 
rng_car: |r|
Definitions unfolded in proof : 
true: True, 
squash: ↓T, 
less_than: a < b, 
prop: ℙ, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
rng: Rng, 
crng: CRng, 
bfalse: ff, 
cons: [a / b], 
select: L[n], 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
lt_int: i <z j, 
ycomb: Y, 
itop: Π(op,id) lb ≤ i < ub. E[i], 
grp_id: e, 
pi1: fst(t), 
pi2: snd(t), 
grp_op: *, 
add_grp_of_rng: r↓+gp, 
mon_itop: Π lb ≤ i < ub. E[i], 
rng_sum: rng_sum, 
scalar-product: (a . b), 
cross-product: (a x b), 
scalar-triple-product: |a,b,c|, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rng_minus_wf, 
rng_times_wf, 
infix_ap_wf, 
lelt_wf, 
false_wf, 
rng_zero_wf, 
rng_plus_wf, 
crng_wf, 
rng_car_wf, 
int_seg_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_over_plus, 
rng_times_over_minus, 
crng_times_comm, 
crng_times_ac_1, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_zero, 
iff_weakening_equal
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
functionEquality, 
hypothesis, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (|a,b,c|  =  |b,c,a|)
Date html generated:
2018_05_21-PM-09_45_10
Last ObjectModification:
2017_12_18-PM-01_26_25
Theory : matrices
Home
Index