Nuprl Lemma : scalar-triple-product-symmetry

[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (|a,b,c| |b,c,a| ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-triple-product: |a,b,c| int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  true: True squash: T less_than: a < b prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} rng: Rng crng: CRng bfalse: ff cons: [a b] select: L[n] btrue: tt ifthenelse: if then else fi  subtract: m lt_int: i <j ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] grp_id: e pi1: fst(t) pi2: snd(t) grp_op: * add_grp_of_rng: r↓+gp mon_itop: Π lb ≤ i < ub. E[i] rng_sum: rng_sum scalar-product: (a b) cross-product: (a b) scalar-triple-product: |a,b,c| member: t ∈ T uall: [x:A]. B[x] infix_ap: y subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rng_minus_wf rng_times_wf infix_ap_wf lelt_wf false_wf rng_zero_wf rng_plus_wf crng_wf rng_car_wf int_seg_wf equal_wf squash_wf true_wf rng_times_over_plus rng_times_over_minus crng_times_comm crng_times_ac_1 rng_plus_assoc rng_plus_ac_1 rng_plus_comm rng_plus_zero iff_weakening_equal
Rules used in proof :  baseClosed imageMemberEquality lambdaFormation independent_pairFormation dependent_set_memberEquality functionExtensionality applyEquality because_Cache axiomEquality isect_memberEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality hypothesis sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination independent_isectElimination independent_functionElimination

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (|a,b,c|  =  |b,c,a|)



Date html generated: 2018_05_21-PM-09_45_10
Last ObjectModification: 2017_12_18-PM-01_26_25

Theory : matrices


Home Index